

lofn documentation

Contents:

	Introduction to lofn
	How It Works

	Supported Features

	Getting Started
	Installation

	Dependencies

	Running on Standalone

	Running on YARN

	Examples

	Using lofn on AWS
	Security Settings

	Manual Setup

	Automatic Setup

	lofn package
	Subpackages

	Submodules

	lofn.api module

	lofn.docker_handler module

	lofn.hdfs_handler module

	lofn.tmp_file_handler module

Indices and tables

	Index

	Module Index

	Search Page

Introduction to lofn

A magical wrapper for serial tools to parallelize them using Spark and Docker.

How It Works

lofn uses Spark to partition data and schedule tasks. The tasks are carried out by Docker.
lofn writes the partitions to temp files for Docker to mount. The Docker container carries out the commands you set up
and writes the resultant files to the same temp directory to be read back into Spark.

A program that can be broken down into map and reduce steps can be parallelized using lofn. This can work on both serial
and parallelized tools. If a program is built to work in a multi-core environment but not on a cluster, lofn can help
deploy it on a cluster and each task can still run with its native parallel code.

Explore some of our examples [https://github.com/michaeltneylon/lofn/blob/master/example].

Supported Features

	Map and Reduce for text files and binary files.
	map_binary takes text as input and produces binary output that can be passed to reduce_binary

	User volumes as a global reference that are not partitioned.

	User defined functions can override how to write the temp files from the partition,
such as unpacking key, value pairs into separate files.

Getting Started

Installation

pip install lofn

Dependencies

You can use python 2 or 3, 2.7+ and 3.6+ preferably.

Running a script on this framework requires Spark and Docker.

Install Docker

See the Docker Docs [https://docs.docker.com/engine/installation/] on how to install.

Install Spark

See the Downloading Spark [https://spark.apache.org/docs/latest/#downloading] instructions to get started.
It will require Java be installed and in your PATH or set JAVA_HOME and
downloading the jar files [http://spark.apache.org/downloads.html]. Then set SPARK_HOME as the path to this directory
and add its bin directory to PATH as well.

Running on Standalone

lofn can be run on Spark standalone on a cluster or a single node. Use spark-submit to submit your application
to Spark.

Running on YARN

Some configurations are required for lofn to work on YARN.

Configure the Cluster

Beyond having Spark setup on a YARN cluster ready to submit jobs, follow these steps for lofn to work:

	install lofn on each node

	install Docker on each node

	create a Docker group

	add $USER and yarn user to Docker group

	restart yarn daemons and your shell for changes to take effect

See the next page ‘Using lofn on AWS’ for instructions on how to setup an EMR cluster automatically for lofn

Submission

	User volumes must be in HDFS and your volumes dictionary should provide the absolute path to the directory on HDFS

	use spark-submit to submit the application to Spark

Examples

Explore some of our examples [https://github.com/michaeltneylon/lofn/blob/master/example] to get started.

Using lofn on AWS

Setup an Elastic Map Reduce cluster on Amazon with lofn

Setup an EMR cluster with Spark installed. Increase the root volume size from the default since lofn uses this for
its temporary files.

Security Settings

	make sure port 22 is open on each node for SSH

	For docker swarm ensure ports are open: docker swarm [https://docs.docker.com/engine/swarm/swarm-tutorial/#use-docker-for-mac-or-docker-for-windows]

Manual Setup

The manual steps give a good outline for what is necessary to get a YARN cluster setup for lofn but may vary depending
on the OS.

Master Node

Run the following commands on the master node:

sudo yum update -y
sudo yum install -y git docker
sudo service docker start
sudo groupadd docker
sudo usermod -a -G docker hadoop
sudo usermod -a -G docker yarn
sudo /sbin/stop hadoop-yarn-resourcemanager
sudo /sbin/start hadoop-yarn-resourcemanager
sudo pip install lofn

Worker Node

Run the following commands on the worker node:

sudo yum update -y
sudo yum install -y git docker
sudo service docker start
sudo groupadd docker
sudo usermod -a -G docker hadoop
sudo usermod -a -G docker yarn
sudo /sbin/stop hadoop-yarn-nodemanager
sudo /sbin/start hadoop-yarn-nodemanager
sudo pip install lofn

exit each shell and log back in for Docker group changes to take effect.

Build Docker Images

If you are using custom images that are not available in a registry, build the images on each node.

Automatic Setup

If using EMR, the following steps can setup a template for automatically building a cluster that is ready to use lofn.

Elastic Map Reduce (EMR)

You can run a bootstrap script on EMR to automatically install Docker Engine and lofn on each node.
After the cluster is up, we then need to configure Docker and join a swarm (to host our Docker images).

Bootstrap

This bootstrap script will install Docker and lofn on each node.
Create a shell script in an S3 bucket to run as a bootstrap step using the commands below:

#! /bin/bash

sudo yum update -y
sudo yum install -y git docker
sudo service docker start
sudo groupadd docker
sudo usermod -a -G docker hadoop
sudo pip install lofn

Step

Run the following as a step, to run after the cluster is running. This only executes on the master, so it will generate
some scripts for you to run upon your first login so they can be executed on the workers.

Store the code below in an S3 bucket and choose a step as a Custom Jar, the path to which is
s3://<region>.elasticmapreduce/libs/script-runner/script-runner.jar which allows you to execute a script. Add the
s3 path to your script as an argument.

#! /bin/bash

sudo usermod -a -G docker yarn
sudo /sbin/stop hadoop-yarn-resourcemanager
sudo /sbin/start hadoop-yarn-resourcemanager

echo '#! /bin/bash' > $HOME/runme.sh
echo 'docker swarm init' >> $HOME/runme.sh
echo 'command=$(docker swarm join-token worker | sed "s/.*command:*//" | tr --delete "\n" | tr --delete "\\\\")' >> $HOME/runme.sh
echo "echo '#! /bin/bash' > $HOME/worker_setup.sh" >> $HOME/runme.sh
echo "echo 'sudo usermod -a -G docker yarn' >> $HOME/worker_setup.sh" >> $HOME/runme.sh
echo "echo 'sudo /sbin/stop hadoop-yarn-nodemanager' >> $HOME/worker_setup.sh" >> $HOME/runme.sh
echo "echo 'sudo /sbin/start hadoop-yarn-nodemanager' >> $HOME/worker_setup.sh" >> $HOME/runme.sh
echo 'echo $command >> $HOME/worker_setup.sh' >> $HOME/runme.sh

workers=$(hdfs dfsadmin -report | grep ^Name | cut -f2 -d: | cut -f2 -d ' ')

for host in $workers;
do
 echo "ssh -A -oStrictHostKeyChecking=no " $host " 'bash -s' < worker_setup.sh" >> $HOME/runme.sh
done
chmod 700 $HOME/runme.sh

Login and Finish Setup

When this is finished, log in to the master node with SSH agent forwarding. The agent forwarding will enable SSH into
the worker nodes from the master node.

Make sure you add your AWS identity to your local SSH agent:

ssh-add <awsid.pem>

login to the master:

ssh -A hadoop@MASTER_PUBLIC_DNS

Execute the script ‘runme.sh’:

./runme.sh

Build and Serve Images

At this point, Docker Swarm is running on the cluster and can host a Docker Registry as a service.
This enables lofn to use custom images that are not available in a registry without having to manually build the image
on each node.

create an overlay network and the registry service on the swarm:

docker network create --driver overlay lofn-network
docker service create --name registry --publish 5000:5000 --network lofn-network registry:2

Build the image, tag it, and push it into the registry. In the example below we are using an image from one of the
examples [https://github.com/michaeltneylon/lofn/blob/master/example/advanced]

git clone https://github.com/michaeltneylon/lofn.git
cd lofn/example/advanced/gsnap_samtools
docker build -t gsnap_samtools .
docker tag gsnap_samtools localhost:5000/gsnap_samtools
docker push localhost:5000/gsnap_samtools

Now in the code [https://github.com/michaeltneylon/lofn/blob/master/example/advanced/YARN/alignment.py],
our images will be named as localhost:5000/gsnap_samtools so each node in the swarm knows from
where to pull the image.

lofn package

Subpackages

	lofn.base package
	Submodules

	lofn.base.hdfs module

	lofn.base.tmp module

Submodules

lofn.api module

Wrapper to execute docker containers as spark tasks.

	
class lofn.api.DockerPipe(spark_configuration, **kwargs)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Main entry point for lofn.

	Parameters:	spark_configuration – spark configuration (e.g.
pyspark.SparkConf())

	Keyword Arguments:

	 	
	temporary_directory_parent – specify an absolute path to the
parent directory to use for temp dirs and files. The default is None,
which then uses a location specified by a platform-dependent list
or uses environment variables TMPDIR, TEMP, or TMP. If specifying
a path, it either needs to exist on all nodes or you must run it
with appropriate permissions so lofn can attempt to create it.

	shared_mountpoint – the path to the directory inside each
docker container that maps to the temporary directory on the host.
(Default ‘/shared/’)

	volumes – User defined volumes to mount in the container.
This is useful for data that is not being partitioned and needs to
be read into each container, such as a global reference. This must
be given as a dictionary. The keys for the dictionary are the
absolute paths to the directory on the host you want to bind. The
value of each of these keys is the information on how to bind that
volume. Provide a ‘bind’ path, which is the absolute path in the
container you want that volume to mount on, and optionally provide
a ‘mode’, as ro (read-only, the default) or rw (read-write). The
structure of this input is similar to docker-py volumes,
and resembles the following structure:
{‘[host_directory_path]’: {‘bind’: ‘[container_directory_path]’,
‘mode’: ‘[ro|rw] } }

	
map(rdd, image_name, command, **kwargs)

	Map step by applying Spark’s mapPartitions.
This writes the partition to temp file(s) and executes a docker
container to run the commands, which is read back into a new RDD.

	Parameters:	
	rdd – a spark RDD as input

	image_name – Docker image name

	command – Command to run in the docker container

	Keyword Arguments:

	 	
	container_input_name – the name of the file within the
shared_mountpoint that is written to before the map from
the host, and read from as the first step in the map in
the container. (Default ‘input.txt’)

	container_output_name – the name of the file the map step
writes to inside the container. This path will belong
inside of the shared_mountpoint which maps to the host temp
directory for that partition. (Default ‘output.txt’)

	docker_options – additional docker options to provide for
‘docker run’. Must be a list.

	map_udf – optional keyword argument to pass a function that
accepts a partition and transforms the data into a dictionary
with a key as filename and value as contents, a list (iterable)
of elements to write to that file within the temporary directory.

	Returns:	transformed RDD

	
map_binary(*args, **kwds)

	Map binary output as a context manager. This currently takes
rdd as input and will output a directory of the
newly written binary files so that they can be read by the user with
sc.binaryFiles. After finishing with the context manager, the temp
files are destroyed.

	Parameters:	
	rdd – spark RDD input

	image_name – docker image

	command – docker command to run

	Keyword Arguments:

	 	
	container_input_name – the name of the file within the
shared_mountpoint that is written to before the map steps from
the host, and read from as the first step in the map in
the container. (Default ‘input.txt’)

	container_binary_output_name – the name of the output file
in map_binary step inside the container. This path will belong
inside of the shared_mountpoint which maps to the host temp
directory for that partition. (Default ‘output.bin’)

	docker_options – additional docker options

	map_udf – function that takes one input, the partition,
and returns a dictionary of filename: contents (as iterable).

	hdfs_tempdir – temporary directory on HDFS to hold binary
files. The default attempts to find the home directory for the user,
but can be overridden by specifying an absolute path to use.

	Returns:	directory path containing the output binary files to be read

	
reduce(rdd, image_name, command, **kwargs)

	Apply a Spark reduce function to the input RDD. This will take
rolling pairs and write to temp files, run a docker container,
execute a command in the container over the temp files, write to
temp files, and return the result.

	Parameters:	
	rdd – a spark RDD as input

	image_name – Docker image name

	command – Command to run in the docker container

	Keyword Arguments:

	 	
	container_input_name – the name of the file within the
shared_mountpoint that is written to before the reduce from
the host, and read from as the first step in reduce in
the container. (Default ‘input.txt’)

	container_output_name – the name of the file the reduce
step writes to inside the container. This path will belong
inside of the shared_mountpoint which maps to the host temp
directory for that partition. (Default ‘output.txt’)

	docker_options – additional docker options to provide for
‘docker run’. Must be a list.

	reduce_udf – The default behavior for handling the pairs of
partitions is to append right to left and write to one temp
file. This can be overridden by supplying a ‘reduce_udf’
function that takes two inputs, the pair of partitions,
and transforms them to return a dictionary mapping a key of
filename to value of contents in a list (iterable) of elements
to write to a file within the temp directory.

	
reduce_binary(rdd, image_name, command, **kwargs)

	Reduce partitions from map_binary output. The format of these
partitions is different so this handles them and also writes the
temp files as one string rather than trying to split newlines since
these are binary.

	Parameters:	
	rdd – spark RDD

	image_name – docker image

	command – docker command

	Keyword Arguments:

	 	
	container_binary_input_1_name – the name of the left side
file in reduce_binary step inside the container. This path will
belong inside of the shared_mountpoint which maps to the host temp
directory for that partition. (Default ‘input_1.bin’)

	container_binary_input_2_name – the name of the right side
file in reduce_binary step inside the container. This path will
belong inside of the shared_mountpoint which maps to the host temp
directory for that partition. (Default ‘input_2.bin’)

	container_binary_output_name – the name of the output file
in reduce_binary step inside the container. This path will belong
inside of the shared_mountpoint which maps to the host temp
directory for that partition. (Default ‘output.bin’)

	docker_options – additional docker options

	reduce_udf – default behavior for reduce_binary is to
write each input as a temp file to give two binary input files to the
container. Write a UDF here that takes two inputs and outputs a
dictionary mapping filename: contents (a string)

	Returns:	iterable of reduce results

lofn.docker_handler module

Run Docker containers.

	
exception lofn.docker_handler.DockerFailure

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

Custom exception to communicate the container failed.

	
lofn.docker_handler.execute(command)

	Use the shell to invoke Docker. Catch exceptions and return to master
to be caught and reported helpfully.

	Parameters:	command – bash command to call docker with requested configuration

	Returns:	if failure, the message about why it failed is returned,
otherwise it returns False

	
lofn.docker_handler.run(image_name, command, bind_files, volume_files, **kwargs)

	Make system calls with subprocess to run our containers.

	Parameters:	
	image_name – docker image to run a container

	command – docker command to run in container

	bind_files – container paths to set as mount point

	volume_files – host paths to mount

	Keyword Arguments:

	 	
	docker_options – additional options to pass to docker run as a list

	temporary_directory_parent – specify the parent directory for
temporary directories and files. Must exist or have permission to
create the directory. The default is None, which uses the a default
from a platform-dependent list or the system’s environment variable
for TMP, TMPDIR, or TEMPDIR.

	Returns:	status of execution, False is no issues otherwise returns
failure message.

	
lofn.docker_handler.validate_user_input(volumes)

	Validate the user input. Checks the type and structure.

lofn.hdfs_handler module

Interact with HDFS.

	
lofn.hdfs_handler.setup_user_volumes_from_hdfs(*args, **kwds)

	GET a local copy of the volume to mount in Docker and update and map
the volumes dictionary with the new local temp directory.

	Parameters:	volumes – Docker volumes specification as a dictionary, similar
to structure seen in DockerPy.
User defined volumes to mount in the container.
example:
{‘[host_directory_path]’: {‘bind’: ‘[container_directory_path]’,
‘mode’: ‘[ro|rw] }}
The host directory path in the dictionary must be the absolute path to
the directory on HDFS.

	Keyword Arguments:

	 	temporary_directory_parent – manually specify the parent directory
or the temp files directories, else default is None which uses the
system’s TMP/TMPDIR.

	Returns:	a volumes dictionary mapping to the new temporary directories

lofn.tmp_file_handler module

Create temp files for Docker read/write

	
class lofn.tmp_file_handler.UDF(temporary_directory, user_function, **kwargs)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Define how to handle RDD partitions to temp files.

The return should be a dictionary, with filename as key and list of
elements as value. These files are written inside of the shared
mount point temporary directory.

These file names override the input container name.

	
map_udf()

	Unpack a partition into multiple files based on a user defined
function. The udf should return a dictionary, with filename as key
and list of elements as value.These files are written inside of the
shared mountpoint temporary directory.

These filenames override the input container name.

	
reduce_udf()

	Define handling of pairs of partitions for the reduce step.
Pass a function to handle the pair of partitions input and return a
dictionary mapping file name as key and value as an iterable of
contents to write to the temp file.

This will override the input container name.

	
write_temp_files(inner_partitions)

	Write contents to temp file with defined name. Iterables are written
line by line, while binary data is written as a single string.

	Parameters:	inner_partitions – the content to write, either as iterable
for regular files or string for binary data

	
lofn.tmp_file_handler.handle_binary(origin_directory, destination_directory, input_path, master_type)

	Move, rename, and keep temp file outputs into one directory to be
read back by user with sc.binaryFiles() and then remove the original
temp directory used by the containers.

	Parameters:	
	origin_directory – temporary directory mounted by container

	destination_directory – the shared temporary directory, either
locally or on hdfs, for all the output files to be moved

	input_path – the full path to the file to be moved to on HDFS

	master_type – spark master type, yarn or standalone

	Returns:	path to new file

	
lofn.tmp_file_handler.read_back(shared_dir, output_file)

	Read text files back into an iterable from temp file then destroy the
temp file and its parent directory.

	Parameters:	
	shared_dir – the temporary directory that the container mounted

	output_file – path to output filename

	Returns:	iterable of output file contents

	
lofn.tmp_file_handler.read_binary(shared_dir, output_file)

	Read back binary file output from container into one string, not an
iterable. Then remove the temporary parent directory the container
mounted.

	Parameters:	
	shared_dir – temporary directory container mounted

	output_file – path to output file

	Returns:	str of file contents

lofn.base package

Submodules

lofn.base.hdfs module

Base classes and functions to interact with HDFS.

	
lofn.base.hdfs.get(remote, local)

	Get from HDFS

	
lofn.base.hdfs.mkdir_p(path)

	Make directory with parents if they don’t exist

	
lofn.base.hdfs.put(local, remote)

	Put into HDFS

	
lofn.base.hdfs.rm_r(path)

	Remove recursively

lofn.base.tmp module

Base functions and classes for using temp files.

	
lofn.base.tmp.create_temp_directory(directory=None)

	Create a temporary directory. Supports setting a parent directory that
is not temporary and will try to create it if it does not already exist.

	Parameters:	directory – specify a parent directory instead of using default
(None -> /tmp)

	Returns:	path to directory

	
lofn.base.tmp.write_binary_to_temp_file(data, path)

	Write string directly to file for binary data.

	
lofn.base.tmp.write_to_temp_file(iterable, path)

	Write iterable to temporary file, an item per line.

	Parameters:	
	iterable – list or tuples of contents to write to file

	path – absolute path to file. We use a tempdir as parent.

	Returns:	path to temporary file

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 lofn	

 	
 	
 lofn.api	

 	
 	
 lofn.base.hdfs	

 	
 	
 lofn.base.tmp	

 	
 	
 lofn.docker_handler	

 	
 	
 lofn.hdfs_handler	

 	
 	
 lofn.tmp_file_handler	

Index

 C
 | D
 | E
 | G
 | H
 | L
 | M
 | P
 | R
 | S
 | U
 | V
 | W

C

 	
 	create_temp_directory() (in module lofn.base.tmp)

D

 	
 	DockerFailure

 	
 	DockerPipe (class in lofn.api)

E

 	
 	execute() (in module lofn.docker_handler)

G

 	
 	get() (in module lofn.base.hdfs)

H

 	
 	handle_binary() (in module lofn.tmp_file_handler)

L

 	
 	lofn.api (module)

 	lofn.base.hdfs (module)

 	lofn.base.tmp (module)

 	
 	lofn.docker_handler (module)

 	lofn.hdfs_handler (module)

 	lofn.tmp_file_handler (module)

M

 	
 	map() (lofn.api.DockerPipe method)

 	map_binary() (lofn.api.DockerPipe method)

 	
 	map_udf() (lofn.tmp_file_handler.UDF method)

 	mkdir_p() (in module lofn.base.hdfs)

P

 	
 	put() (in module lofn.base.hdfs)

R

 	
 	read_back() (in module lofn.tmp_file_handler)

 	read_binary() (in module lofn.tmp_file_handler)

 	reduce() (lofn.api.DockerPipe method)

 	
 	reduce_binary() (lofn.api.DockerPipe method)

 	reduce_udf() (lofn.tmp_file_handler.UDF method)

 	rm_r() (in module lofn.base.hdfs)

 	run() (in module lofn.docker_handler)

S

 	
 	setup_user_volumes_from_hdfs() (in module lofn.hdfs_handler)

U

 	
 	UDF (class in lofn.tmp_file_handler)

V

 	
 	validate_user_input() (in module lofn.docker_handler)

W

 	
 	write_binary_to_temp_file() (in module lofn.base.tmp)

 	
 	write_temp_files() (lofn.tmp_file_handler.UDF method)

 	write_to_temp_file() (in module lofn.base.tmp)

 _static/plus.png

nav.xhtml

 Table of Contents

 		lofn documentation

 		Introduction to lofn

 		How It Works

 		Supported Features

 		Getting Started

 		Installation

 		Dependencies

 		Install Docker

 		Install Spark

 		Running on Standalone

 		Running on YARN

 		Configure the Cluster

 		Submission

 		Examples

 		Using lofn on AWS

 		Security Settings

 		Manual Setup

 		Master Node

 		Worker Node

 		Build Docker Images

 		Automatic Setup

 		Elastic Map Reduce (EMR)

 		Login and Finish Setup

 		Build and Serve Images

 		lofn package

 		Subpackages

 		lofn.base package

 		Submodules

 		lofn.api module

 		lofn.docker_handler module

 		lofn.hdfs_handler module

 		lofn.tmp_file_handler module

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

